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1. INTRODUCTION

The development of the Advanced Field Artillery System (AFAS), with its high rate-of-fire

requirement, has refocussed interest in the thermal management of gun tubes, which includes

consideration of cook-off of propellants and/or projectiles, tank gun accuracy, barrel wear and

erosion, and thermal signature. In the past, investigators have measured gun tube thermal

profiles for various weapons and they have employed heat conduction codes to model the gun

tube heating (see references). The lack of appropriate boundary conditions at the inner wall

surface compelled researchers to use ingenious approximation techniques (Rapp 1990) and

curve fitting to produce a history of tube heating during the interior ballistic cycle. One method

to produce the inner wall boundary condition was to use thermocouple measurements to

compute the heat input to the gun tube along its length. These measurements provided an

experimental axial heat input profile which then was used to model other similar systems.

This was accomplished by modifying the input profile using a ratio based on the total energy

cf the charge. This type of model neglects the mechanisms which lead to the development of

the thermal profile and, thus, does not allow the model to make predictions for a weapons

system significantly different from that used for the model calibration.

Barrel heating is due to forced convection of hot combustion gases, the projectile's sliding

friction, and obturator galling. In addition, there may be a significant radiative contribution to

the heating in the region of the breech (Leech 1972). Plastic obturators have reduced the

galling and sliding friction component considerably. A one-dimensional interior bahiistic (IB)

code can supply the information which is necessary for computing the interior boundary

condition at the wall, given a proper convective coefficient, which must include the effects of

pressure, gas velocity, and compressibility of the combustion products both spatially and

temporally.

Recently, Chandra (1990) and Chandra and Fisher (1989) have applied an IB code

(Gough 1980) to barrel heating. This work utilized the results from lB Lodes to provide an

appropriate inner wall boundary condition to the heat transfer/conduction routine.



2. ANALYTICAL DESCRIPTION

The analysis used by Chandra and Fisher (1990) is presented below. It incorporates a

compressible turbulent boundary layer with an arbitrary oressure gradient model (Stratford and

Beavers 1961). An equivalent flat-plate length is calculated

z
,(Pz'AZ)

x 1 , (1)Pz

using a Mach number weighted pressure

Pz = M4 1),2 (2)

where

M= U (3)

The compressible Reynolds number is then computed as

Re*= , ,__ (4)
11.L

with the viscosity, p" = v .p, computed using a modified form of Sutherland's law

(Schlichting 1979)

V= 1.492.1 0-ST*15  (5)
145.8 + T°

having determined the static temperature, T*, from the reference enthalpy (Chandra and

Fisher 1989). The compressible skin friction given by (Carpenter and Klavins 1965)

ct = [1 + (y - 1)2M2]-0'6  (6)
c,'

2



is incorporated with Re*, C,, g, and X to create the heat transfer correlation (Chandra and

Fisher 1989)

0. [.037.E:Re*°8 Cp(Tg - T.) (7)

Thus, the heat transfer coefficient is

h 0.037iLRe'°""fCp (8)

This system of equations has been shown to work fairly well for short periods of firing

(Talley 1989). Due to the boundary at the breech of tha gun tube, this velocity-dependent

correlation fails to physically represent the rear portion of the gun tu..,e. To correct for this, a

turbulent velocity has been introduced into the system. It effectively raises the magnitude of

the local gas ve',,city by using a turbulent Mach number of 0.1 (Chandra 1990).

Leech (1972) has investigated the effects of thermal radiation inside the chamber using a

participating medium model. His results indicate that within a few inches from the breech the

significant mode of heat transfer is radiation, while farther down the chamber the particles in

the developing boundary layer absorb most ,f the radiation. The incorporation of a particle-

;aden, absorbing boundary layer is a possible addition to the future version of the model which

may reduce the reliance on the turbulent convection and increase the physical accuracy of the

model.

The method used for solving for the tube temperature utilizes the one-dimensional radial

heat conduction equation

oJ2T+ 1_T _lT (9)
r_2 r ar ac a~t



with theo internal boundary condition given as a specified heat flux

-k T = h(Tg - T,) (10)

and an insulated external boundary. The physical properties of the gun steel are treated as

constants throughout the calculation; however, the properties presented by the Mechanical

Properties Data Center (Belfour Stulen Inc. 1973) show a reduction in the conductivity and a

sharp spike at 1,400 K in the specific heat with an increase in temperature.

The equations are explicitly computed using central differences and the grid has been

generated using a geometric factor to account for the radial geometry and the fine grid

necessary at the inner wall. An allowance has been made for various materials, such as

chrome, to be included in the tube.

The model used in this paper incorporates the one-dimensional NOVA (Gough 1980)

IB code to provide the necessary state variables for the calculation of the convective heat

transfer coefficient described previously. Typically, the duration of an IB cycle is on the order

of 50 ms or less; however, for heat transfer studies, the IB cycle is assumed to be from the

time of the first round until the barrel reaches ambient temperature or until the next round is

fired. The requirement on the IB code to produce the necessary state variables after shot exit

for up to six orders of magnitude in time greater than a typical IB calculation necessitates the

use of a open muzzle boundary condition after shot exit. Gough (1980) uses an isentropic

(Eq. 11)

2= go (yRL)[- 1 ; P',] + 2bP (11)

A0M 0+b

P.
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or choked (Eq. 12)

= A.o PlYg 2 1 [1. - 0.224y + O.104y 2] (12)

mass flux calculation for either subsonic or supersonic exit flow, respectively, thus allowing the

gas flow out the gun muzzle to continue to empty the gun tube. This allows the IB code to

compute the thermodynamic expansion cooling, rather than using a linear interpolation to

ambient conditions. This calculation can be maintained for about 80 ms, by which time the

breech pressure has reached ambient and the NOVA code stops. The other state variables

are then brought to ambient through either a conservative linear interpolation or a special

exponential function which reduces the state variables to ambient after a short amount of time

(about 1-2 s) with respect to the cycle time. The exponential decay function resulted in the

prediction of approximately 3% lower inner wall temperatures after 30 rounds at 12 rounds per

minute are fired in the 155-mm M199 cannon, using an M203 charge. This implies that a

conservative approach will trade a small increase in wall temperature for confidence that the

experimental temperature will not exceed the computed values.

Figure 1 presents the flow chart of a conduction calculation using the Chandra and Fisher

model. The state variables are stored temporally and spatially in the HTEMP.OUT file, thus

creating an IB "signature" for a specific charge. This signature can then be utilized to study

various firing scenarios assuming that the feedback to the IB calculation is small. The heat

transfer and conduction code XB is used to make various scenario studies with the signature

file as an input along with the desired scenario defined in the input deck XB.IN.

The output of this IB code for one round is then used in a separate uncoupled interpolation

and heat transfer/conduction routine. Given the history of one round, this stand-alone routine

allows the user to define various firing scenarios assuming no feedback to the next charte by

the rising tube temperature.

5
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3. NUMERICAL CALCULATIONS

There are two weapons systems for which experimental heating data exist; we chose to

perform this study by modeling these two systems. One system involves the use of the M203

charge in a 155-mr.i nowitzer; the other is a 27-mm casc!ess Olin round. The 1979 Thermal

Warning Devirc (TWD) study by Vottis and Hasenbein (1979) provides the 155-mm data. The

27--..,,, cnarge (Williams 1972) presents a rapid, uniform rate of fire.

4. DISCUSSION

The M203 experimental data are presented in the TWD study in many forms with various

rates of fire over periods of time. The scenario of 6 rounds per minute for 3 min followed by

3 rounds per minute continuous has been modeled and presented in Figure 2. A comparison

of the experimental and numerical outer tube wail temperature history shown in Figure 3 has

been made at the origin of rifling. This comparison reveals the importance of an external heat

transfer coefficient if the calculation is to cover long periods of firing, for the temperatures

keep rising while the experimental data level off. The temperature rise rate for the numerical

calculation is about 1.8 times that of the experimental data. This causes the data presented

here to be incorrect quantitatively, but qualitatively useful. There is a significant lag in the

response of the outer tube wall from the first round for the numerical computations which

reflects the amount of time for the heat to diffuse to the outer wall.

Two other scenarios performed on the M203 charge were 6 vs. 12 rounds per minute for

5 minutes and then 3 rounds minute thereafter for 100 rounds. The temperature was

recorded at the origin of rifling. The results are presented for the inner and outer wall surface

temperatures in Figures 4 and 5. The differences between 6 and 12 rounds per minute reveal

themselves in the radial thermal profile of the gun tube over a period of time. Figure 6 shows

the radial profile of the gun tube for three situations: 12 rounds per minute for 30 rounds and

6 rounds per minute for 15 and 30 rounds. What is seen between the two scenarios is that

the tube's constant diffusivity does not transport the heat into the barrel as rapidly when the

heat-flux rate at the inner wall is higher. This is true because a thermal barrier develops at

the inner wall which prevents as much heat transfer to occur per round as that of the lower

firing rate scenario. This shows that given a fixed number of rounds fired, the heat capacity of

7
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Figure 2. Numerical Gun Tube Temperature Calculation Results at Both the Inner and Outer
Walls for the M203 Charge in a 155-mm Howitzer at the Ori.in of Rifling for
6 Rounds Per Minute for 3 Minutes Followed by 3 Rounds Per "Ainuie Continuous.
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Figure 3. Experimental vs. Numerical Results for the Outer Gun Tube Tempr ature at the
Origin of Rifling for the M203 Charge in a 155-mm Howitzer, Given the Firing Rate
in Figure 2.
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Figure 4. Numerical Gun Tube Temperature Calculation Results at Both the Inrner and Outer
Walls for the M203 Char-ge in a 155-mm Howitzer at the Origin of Rifling for
6 Rounds Per Minute for 5 Minutes Followed by 3 Rounds Per Mknute Continuous.
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Figure 5. Numerical Gun Tube Temperature Calculation Results at Both the Inner and Outer
Walls for the M203 Charge in a 155-mm Howitzer at the Origin of Rifling for
12 Rounds Per Minute for 5 Minutes Followed by 3 Rounds Per Minute Continuous.
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Figure 6. A Comparison of Wall Temperature Profiles for the 12 Rounds Per Minute vs.
6 Rounds Per Minute Scenarios After 30 Rounds and 6 Rounds Per Minute After
18 Rounds.

the tube near the inner wall is used under a relatively higher firing rate to store rather than
transfer the energy, thus building a larger difference between the inner and outer wall

temperatures (as seen in Figures 4 and 5) from 0 to 350 seconds. This difference decreases

rapidly as the firing scenario is changed to the three rounds per minute sustained case,

bringing the convection rate down closer to the conduction rate. Thus, after 110 rounds, both

the 12 rounds per minute and 6 rounds per minute scenarios have the same thermal profile.

There is a 22.5-s lag in the response of the outer tube wall for the 6 rounds per minute

and a 20.75-s lag for the 12 rounds per minute scenario. This reflects the amount of time for

a thermal disturbance to propagate to the outer wall. The faster the firing rate, the higher the
inner wall surface temperature and the larger the total thermal disturbance, but the rate of

propagation does not present itself as a strong function of the firing rate. For linear

conduction, the propagation rate is given by (Carslaw and Yaeger 1959)

10



a =- I2 k (13)

with CP being the specific heat of the barrel. The propzgation rate is not so easily traceable

analytically for tadial systems with time-dependant bnundary conditions. However, from the

numerical experiment, it appears that a ratio difference of 10'", or about 1c, exists between the

linear propagation function and that of the higher numerical result.

Figure 7 shows the experimental chamber and thermocouple placements for the 27-mm

Caseless Automatic Weapon (CAW). The thermocouples were designed and built by Comell

Aeronautical Laboratory and placed between 0.0254 cm and 0.0508 cm away frc n the inner

wall. Typical thermocouple traces are shown in Figure 8. What can be seen in Figure 8 is

the convective nature of the heat transfer in that the recorded temperature decreases from the

front of the chamber to the breech where the cross flow is small. The stop shoulder location

was used for demonstrative modeling, the results of which are presented in Figure 9. The

experimental and numerical peak temporatures match well after four rounds. The simulation

models the experiment well because the outer barmel wall does not respond during the 3-s

burst. There is a lag not numerically represented in the experimental data at the initiation of

the burst. This could possibly be due to a small amount of ambient air surrounding the back

side of the thermocouple acting as a heat sink, thus lowering the thermocouple's reading until

the air became heated.

The rate dependency of the outer wa!l temperature shows the futility of using a TWD on

the outer wall without the gun's recent firing history. A TWD could be very effective without

any historical knowledge or tabularized data if it gave the inner tube wall temperature prior to

loading.

11
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Figure 7. Experimetal. Location of the Thermocouples for the 27-mm CAW Study.
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Figure 8. Typical Experimental Thermocoup!e Traces for the 27-mm CAW
Study 0.000254 m (0.S01 in) from the rnner Wall.
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Figure 9. Numerical Results for the 27-mm CAW Study at the Stop
Shoulder 0.0900254 m (0.01 in) From the Inner Wall.

5. CONCLUSIONS

A one-dimensi -al radial heat conduction code has been successfully coupled to a one-

dimensional, two-phase flow IB code. The heat conduction code works fairly well during the

initial temperature rise in a gun barrel as seen in the 27-mm data. Various scenarios for the

155-mm system qualitatively show the form of the gun tube's thermal profile. The results of

the 155-mm study show that extemal heat transfer is needed if the long-term effects are to be

quantitatively modeled.

6. CODE IMPROVEMENTS UNDER IMPLEMENTATION OR CONSIDERATION

The heat conduction analysis is currently being upgraded to a two-dimensional

representation with internal radiation and external heat convection and radiation heat transfer

models. The conduction and the internal wall heat transfer are being uncoupled to allow

temporal and spatial heat convection coefficients and gas temperatures to be computed for

use in other conduction codes in the community. Possible revisions include variable physical

properties of the material, a more complex participating medium radiation model inside the

gun toe, and coupling between the IB code and the heat conduction code for a more

physically authentic calculation.
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LIST OF SYMBOLS

A - Cross-sectional area at the muzzle

A. - Critical cross-sectional area at the muzzle

b - Covolume equation constant

Cf - Skin friction coefficient

Cfi - Reference skin friction cr ifficient

CP- Specific heat at constant pressure

0 - Gravitational constant

h - Enthalpy

K - Conductivity coefficient

M - Mach number

M - Mass flux

P, - Reference pressure

P - Pressure at the z'th location

0 -, Heat flux to the wall

R - Reynolds number

Re - Reference Reynolds number

R9  - Gas constant

T - Temperature

T - Static temperature

T - Gas temperature

T - Reference gas temperature

T, - Wall temperature

u - Axal gas velocity
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y Covolume correction

z Axial position

a Thermal diffusivity

y Ratio of specific heats

p.I Reference viscosity

p Density

v Reference kinematic viscosity

X Equivalent flat plate length

) Frequency of heat input
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LIST OF ABBREVIATIONS

AFAS - Advanced Field Artillery System

lB - Interior Ballistic

TWD - Thermal Warning Device

CAW - Caseless Automatic Weapon
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